skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Zhidong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2025
  2. Abstract We consider the inverse source problem in the parabolic equation, where the unknown source possesses the semi-discrete formulation. Theoretically, we prove that the flux data from any nonempty open subset of the boundary can uniquely determine the semi-discrete source. This means the observed area can be extremely small, and that is the reason we call it sparse boundary data. For the numerical reconstruction, we formulate the problem from the Bayesian sequential prediction perspective and conduct the numerical examples which estimate the space-time-dependent source state by state. To better demonstrate the method’s performance, we solve two common multiscale problems from two models with a long source sequence. The numerical results illustrate that the inversion is accurate and efficient. 
    more » « less
  3. Many monotonic and cyclic tests have been conducted on cold-formed steel framed shear walls in the last 20 years. Cold-formed steel framed shear wall provisions in AISI S240, AISI S400, and ASCE 41 are supported by the data obtained through these tests. The main objective of this article is to introduce a recently compiled cold-formed steel framed shear wall test database, to reveal the database structure, and to explain how to access and present the data. Most recently, the database has been standardized and expanded to include additional tests, complete cyclic information from tests, limit states, and code prediction information. The database structure incorporates a central Excel spreadsheet that includes descriptive information; ordered plain text files for each individual test; and custom MATLAB codes, which can read, process, and plot designated database subsets. The provided database can advance the understanding and modeling of cold-formed steel framed shear walls. 
    more » « less
  4. Abstract Use of cold‐formed steel (CFS) framing as load‐bearing system for gravity and lateral loads in buildings is becoming increasingly common in the North American construction industry, notably in high seismic regions where light‐weight construction is an attractive option. Buildings framed with closely spaced and repetitively placed CFS members can be detailed to develop lateral resistance using a variety of sheathing options. A relatively new option involves the use of steel sheet as sheathing. Steel sheet sheathed CFS shear walls offer high lateral strength and stiffness, and provide ductility courtesy of tension field action within the steel sheet. Despite their acceptance, gaps in the understanding of their behavior do exist, notably, behavior under dynamic loading, the contribution of nonstructural architectural finishes, and the behavior of wall‐lines: shear walls placed inline with gravity walls. To this end, a two‐phased experimental effort was undertaken to advance understanding of the lateral response of CFS‐framed wall‐line systems. Specifically, a suite of wall‐lines, detailed for mid‐rise buildings, were evaluated through simulated seismic loading imposed via shake table and quasi‐static cyclic tests. Damage to the wall‐lines was largely manifested in the form of damage to fastener connections used for attaching the sheathing and gypsum panels, and separation of exterior finish layer. This paper documents and quantifies the progressively incurred physical damage observed in the tested wall‐line assemblies, and correlates it with the evolution of dynamic characteristics and hysteretic energy dissipated across a spectrum of performance levels. 
    more » « less
  5. Two ultrabroadband and omnidirectional perfect absorbers based on transversely symmetrical multilayer structures are presented, which are achieved by four absorptive metal chromium (Cr) layers, antireflection coatings, and the substrates, glass and PMMA, in the middle. At the initial step, the proposed planar structure shows an average absorption of ∼93% over the visible (VIS) and near-infrared range from 400 to 2500 nm and 98% in the VIS range. The optimum flat is optically characterized by the transfer matrix method and local metal-insulator-metal resonance under illumination with transverse-electric and transverse-magnetic polarization waves. The multilayer materials, which are deposited on an intermediate substrate by e-beam evaporation, outperform the previously reported absorbers in the fabrication process and exhibit a great angular tolerance of up to 60°. Afterward, we present a novel symmetrical flexible absorber with the PMMA substrate, which shows not only perfect absorption but also the effect of stress equilibrium. The presented devices are expected to pave the way for practical use of solar-thermal energy harvesting. 
    more » « less
  6. Abstract A solid with larger sound speeds usually exhibits higher lattice thermal conductivity. Here, we report an exception that CuP2has a quite large mean sound speed of 4155 m s−1, comparable to GaAs, but single crystals show very low lattice thermal conductivity of about 4 W m−1K−1at room temperature, one order of magnitude smaller than GaAs. To understand such a puzzling thermal transport behavior, we have thoroughly investigated the atomic structures and lattice dynamics by combining neutron scattering techniques with first-principles simulations. This compound crystallizes in a layered structure where Cu atoms forming dimers are sandwiched in between P atomic networks. In this work, we reveal that Cu atomic dimers vibrate as a rattling mode with frequency around 11 meV, which is manifested to be remarkably anharmonic and strongly scatters acoustic phonons to achieve the low lattice thermal conductivity. 
    more » « less